Fitochimici alimentari e coronavirus. Effetti di quercetina e esperidina

di Paolo Bellavite – HIMed 26, novembre 2022
Il fulltext dell’articolo in pdf può essere scaricato a questo link.
Bibliografia
- Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Reyburn, H. T., Rizzuti, B., and Velazquez-Campoy, A. (2020). Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol. Macromol 164, 1693-1703. S0141-8130(20)33997-0 [pii]; 10.1016/j.ijbiomac.2020.07.235 [doi].
- Adem, S., Eyupoglu, V., Sarfraz, I., Rasul, A., and Ali, M. (2020). Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA. Preprints 2020030333. doi: 10.20944/preprints202003.0333.v1.
- Alesci, A., Aragona, M., Cicero, N., and Lauriano, E. R. (2021). Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat. Prod. Res, 1-20. 10.1080/14786419.2021.1914032 [doi].
- Amevor, F. K., Cui, Z., Du, X., Ning, Z., Deng, X., Xu, D., Shu, G., Wu, Y., Cao, X., Shuo, W., et al. (2022). Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 13, 860889. 10.3389/fimmu.2022.860889.
- Amin, M. U., Khurram, M., Khattak, B., and Khan, J. (2015). Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC. Complement Altern. Med 15, 59. 10.1186/s12906-015-0580-0 [pii]; 580 [pii]; 10.1186/s12906-015-0580-0 [doi].
- Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch-Ernst, K. I., and Lampen, A. (2018). Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res 62. 10.1002/mnfr.201700447 [doi].
- Aoi, W., Iwasa, M., and Marunaka, Y. (2021). Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 88, 102163. 10.1016/j.npep.2021.102163.
- Aune, D., Keum, N., Giovannucci, E., Fadnes, L. T., Boffetta, P., Greenwood, D. C., Tonstad, S., Vatten, L. J., Riboli, E., and Norat, T. (2016). Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC. Med 14, 207. 10.1186/s12916-016-0730-3 [doi]; 10.1186/s12916-016-0730-3 [pii].Aune, D., Keum, N., Giovannucci, E., Fadnes, L. T., Boffetta, P., Greenwood, D. C., Tonstad, S., Vatten, L. J., Riboli, E., and Norat, T. (2018). Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin. Nutr 108, 1069-1091. 5201459 [pii]; 10.1093/ajcn/nqy097 [doi].
- Ayipo, Y. O., Yahaya, S. N., Alananzeh, W. A., Babamale, H. F., and Mordi, M. N. (2021). Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. Infect Genet Evol 93, 104944. 10.1016/j.meegid.2021.104944.
- Barreca, D., Mandalari, G., Calderaro, A., Smeriglio, A., Trombetta, D., Felice, M. R., and Gattuso, G. (2020). Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. Plants. (Basel) 9. plants9030288 [pii]; 10.3390/plants9030288 [doi].
- Basu, A., Sarkar, A., and Maulik, U. (2020). Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep 10, 17699. 10.1038/s41598-020-74715-4 [pii]; 74715 [pii]; 10.1038/s41598-020-74715-4 [doi].
- Bellavite, P. (1988). The superoxide-forming enzymatic system of phagocytes. Free Radic. Biol. Med 4, 225-261.
- Bellavite, P. (2020). Hesperidin and SARS-CoV-2. https://encyclopedia.pub/2638.
- Bellavite, P. (2021a). Reappraisal of Dietary Phytochemicals for Coronavirus Infection: Focus on Hesperidin and Quercetin. In Antioxidants: Benefits, Sources, Mechanisms of action, V. Y. Waisundara, ed. (Intechopen), pp. 473-487. http://dxdoi.org/10.5772/intechopen.95529.
- Bellavite, P. (2021b). Rivalutazione dei fitochimici alimentari per l’infezione da coronavirus: effetti di esperidina e quercetina.
- Bellavite, P., and Donzelli, A. (2020). Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants. (Basel) 9. antiox9080742 [pii]; 10.3390/antiox9080742 [doi].
- Bellavite, P., and Marzotto, M. (2011). Componenti alimentari e fitoterapiche: effetti citotossici sulle cellule cancerose. Medicina Naturale, 32-47.
- Bhowmik, D., Nandi, R., Prakash, A., and Kumar, D. (2021). Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon 7, e06515. S2405-8440(21)00618-6 [pii]; e06515 [pii]; 10.1016/j.heliyon.2021.e06515 [doi].
- Boots, A. W., Haenen, G. R., and Bast, A. (2008). Health effects of quercetin: from antioxidant to nutraceutical. Eur. J Pharmacol 585, 325-337.
- Calder, P. C., Carr, A. C., Gombart, A. F., and Eggersdorfer, M. (2020). Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 12. nu12041181 [pii]; 10.3390/nu12041181 [doi].
- Cao, J. H., Xue, R., and He, B. (2021). Quercetin protects oral mucosal keratinocytes against lipopolysaccharide-induced inflammatory toxicity by suppressing the AKT/AMPK/mTOR pathway. Immunopharmacol Immunotoxicol, 1-8. 10.1080/08923973.2021.1948565.
- Checconi, P., De, A. M., Marcocci, M. E., Fraternale, A., Magnani, M., Palamara, A. T., and Nencioni, L. (2020). Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol. Sci 21. ijms21114084 [pii]; ijms-21-04084 [pii]; 10.3390/ijms21114084 [doi].
- Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang, J., and Liu, J. (2010). Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol 48, 2980-2987. S0278-6915(10)00495-3 [pii]; 10.1016/j.fct.2010.07.037 [doi].
- Chen, Y., Hong, Y., Yang, D., He, Z., Lin, X., Wang, G., and Yu, W. (2020a). Simultaneous determination of phenolic metabolites in Chinese citrus and grape cultivars. PeerJ 8, e9083. 9083 [pii]; 10.7717/peerj.9083 [doi].
- Chen, Y. W., Yiu, C. B., and Wong, K. Y. (2020b). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res 9, 129. 10.12688/f1000research.22457.2 [doi].
- Chirumbolo, S., Conforti, A., Ortolani, R., Vella, A., Marzotto, M., and Bellavite, P. (2010a). Stimulus-specific regulation of CD63 and CD203c membrane expression in human basophils by the flavonoid quercetin. Int. Immunopharmacol 10, 183-192.
- Chirumbolo, S., Marzotto, M., Conforti, A., Vella, A., Ortolani, R., and Bellavite, P. (2010b). Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets. Clin. Mol. Allergy 8, 13.
- Chu, J. R., Kang, S. Y., Kim, S. E., Lee, S. J., Lee, Y. C., and Sung, M. K. (2019). Prebiotic UG1601 mitigates constipation-related events in association with gut microbiota: A randomized placebo-controlled intervention study. World J Gastroenterol 25, 6129-6144. 10.3748/wjg.v25.i40.6129 [doi].
- Costa, C. R., Amorim, B. R., de, M.e. P., De Luca, C. G., Acevedo, A. C., and Guerra, E. N. (2016a). Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review. Phytother. Res 30, 519-531. 10.1002/ptr.5568 [doi].
- Costa, L. G., Garrick, J. M., Roquè, P. J., and Pellacani, C. (2016b). Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med Cell Longev 2016, 2986796. 10.1155/2016/2986796 [doi].
- Crozier, A., Jaganath, I. B., and Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep 26, 1001-1043.
- da Silva, F. M. A., da Silva, K. P. A., de Oliveira, L. P. M., Costa, E. V., Koolen, H. H., Pinheiro, M. L. B., de Souza, A. Q. L., and de Souza, A. D. L. (2020). Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz 115, e200207. S0074-02762020000100341 [pii]; 10.1590/0074-02760200207 [doi].
- Dalan, R., Bornstein, S. R., El-Armouche, A., Rodionov, R. N., Markov, A., Wielockx, B., Beuschlein, F., and Boehm, B. O. (2020). The ACE-2 in COVID-19: Foe or Friend? Horm. Metab Res 52, 257-263. hmr2020-04-0092 [pii]; 10.1055/a-1155-0501 [doi].
- Das, S., Sarmah, S., Lyndem, S., and Singha, R. A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol. Struct.
- Dyn, 1-11. 1763201 [pii]; 10.1080/07391102.2020.1763201 [doi].
Daulatzai, M. A. (2014). Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem. Res 39, 624-644. 10.1007/s11064-014-1266-6 [doi]. - Delgado-Roche, L., and Mesta, F. (2020). Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med Res 51, 384-387. S0188-4409(20)30540-3 [pii]; 10.1016/j.arcmed.2020.04.019 [doi].
- Erlund, I., Kosonen, T., Alfthan, G., Mäenpää, J., Perttunen, K., Kenraali, J., Parantainen, J., and Aro, A. (2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J Clin. Pharmacol 56, 545-553. 10.1007/s002280000197 [doi].
- Estruel-Amades, S., Massot-Cladera, M., Pérez-Cano, F. J., Franch, Ã., Castell, M., and Camps-Bossacoma, M. (2019). Hesperidin Effects on Gut Microbiota and Gut-Associated Lymphoid Tissue in Healthy Rats. Nutrients 11. nu11020324 [pii]; nutrients-11-00324 [pii]; 10.3390/nu11020324 [doi].
- Etemadi, A., Sinha, R., Ward, M. H., Graubard, B. I., Inoue-Choi, M., Dawsey, S. M., and Abnet, C. C. (2017). Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957. 10.1136/bmj.j1957 [doi].
- Fazio, S., Affuso, F., and Bellavite, P. (2022). A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Management of Mild-to-Moderate Symptomatic COVID-19. Med Sci Monit 28, e936292. 10.12659/MSM.936292.
- Fazio, S., Bellavite, P., Zanolin, E., McCullough, P. A., Pandolfi, S., and Affuso, F. (2021). Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis of Early COVID-19 and Treated at Home Within 3 Days or After 3 Days of Symptom Onset with Prescribed and Non-Prescribed Treatments Between November 2020 and August 2021. Med Sci Monit 27, e935379. 10.12659/MSM.935379.
- Fidelix, M., Milenkovic, D., Sivieri, K., and Cesar, T. (2020). Microbiota modulation and effects on metabolic biomarkers by orange juice: a controlled clinical trial. Food Funct 11, 1599-1610. 10.1039/c9fo02623a [doi].
- Filardo, S., Di, P. M., Mastromarino, P., and Sessa, R. (2020). Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther, 107613. S0163-7258(20)30143-1 [pii]; 10.1016/j.pharmthera.2020.107613 [doi].
- Fordham, J. B., Naqvi, A. R., and Nares, S. (2014). Leukocyte production of inflammatory mediators is inhibited by the antioxidants phloretin, silymarin, hesperetin, and resveratrol. Mediators. Inflamm 2014, 938712. 10.1155/2014/938712 [doi].
- Formica, J. V., and Regelson, W. (1995). Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol 33, 1061-1080. 0278691595000771 [pii]; 10.1016/0278-6915(95)00077-1 [doi].
- Fratta Pasini, A. M., Stranieri, C., Cominacini, L., and Mozzini, C. (2021). Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants. (Basel) 10. antiox10020272 [pii]; antioxidants-10-00272 [pii]; 10.3390/antiox10020272 [doi].
- Gao, C., Kong, S., Guo, B., Liang, X., Duan, H., and Li, D. (2019). Antidepressive Effects of Taraxacum Officinale in a Mouse Model of Depression Are Due to Inhibition of Corticosterone Levels and Modulation of Mitogen-Activated Protein Kinase Phosphatase-1 (Mkp-1) and Brain-Derived Neurotrophic Factor (Bdnf) Expression. Med Sci Monit 25, 389-394. 10.12659/MSM.912922.
- Gasmi, A., Tippairote, T., Mujawdiya, P. K., Peana, M., Menzel, A., Dadar, M., Benahmed, A. G., and Bjørklund, G. (2021). The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin. Immunol 226, 108725. S1521-6616(21)00062-0 [pii]; 108725 [pii]; 10.1016/j.clim.2021.108725 [doi].
- Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., and Caristi, C. (2007). Flavonoid composition of Citrus juices. Molecules 12, 1641-1673. 12081641 [pii]; 10.3390/12081641 [doi].
- Glinsky, G. V. (2020). Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines 8. biomedicines8050129 [pii]; biomedicines-08-00129 [pii]; 10.3390/biomedicines8050129 [doi].
- Gour, A., Manhas, D., Bag, S., Gorain, B., and Nandi, U. (2021). Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother Res. 10.1002/ptr.7092.
- Guler, H. I., Tatar, G., Yildiz, O., Belduz, A. O., and Kolayli, S. (2021). Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Arch. Microbiol, 1-8. 10.1007/s00203-021-02351-1 [pii]; 2351 [pii]; 10.1007/s00203-021-02351-1 [doi].
- Guo, C., Zhang, H., Guan, X., and Zhou, Z. (2019a). The Anti-Aging Potential of Neohesperidin and Its Synergistic Effects with Other Citrus Flavonoids in Extending Chronological Lifespan of Saccharomyces Cerevisiae BY4742. Molecules 24. molecules24224093 [pii]; molecules-24-04093 [pii]; 10.3390/molecules24224093 [doi].
- Guo, K., Ren, J., Gu, G., Wang, G., Gong, W., Wu, X., Ren, H., Hong, Z., and Li, J. (2019b). Hesperidin Protects Against Intestinal Inflammation by Restoring Intestinal Barrier Function and Up-Regulating Treg Cells. Mol. Nutr. Food Res 63, e1800975. 10.1002/mnfr.201800975 [doi].
- Harwansh, R. K., and Bahadur, S. (2021). Herbal Medicine in Fighting Against COVID-19: New Battle with an Old Weapon. Curr. Pharm. Biotechnol. CPB-EPUB-114994 [pii]; 10.2174/1389201022666210322124348 [doi].
- Hati, S., and Bhattacharyya, S. (2020). Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega 5, 16292-16298. 10.1021/acsomega.0c02125 [doi].
- Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., and Bohn, T. (2020). Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 12. nu12061562 [pii]; nutrients-12-01562 [pii]; 10.3390/nu12061562 [doi].
- Ikram, M., Muhammad, T., Rehman, S. U., Khan, A., Jo, M. G., Ali, T., and Kim, M. O. (2019). Hesperetin Confers Neuroprotection by Regulating Nrf2/TLR4/NF-κB Signaling in an Aβ Mouse Model. Mol. Neurobiol 56, 6293-6309. 10.1007/s12035-019-1512-7 [pii]; 10.1007/s12035-019-1512-7 [doi].
- Jo, S. H., Kim, M. E., Cho, J. H., Lee, Y., Lee, J., Park, Y. D., and Lee, J. S. (2019). Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch. Pharm. Res 42, 695-703. 10.1007/s12272-019-01174-5 [doi]; 10.1007/s12272-019-01174-5 [pii].
- Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., and Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol. Struct. Dyn, 1-16. 1760137 [pii]; 10.1080/07391102.2020.1760137 [doi].
- Junior, A. G., Tolouei, S. E. L., Dos Reis LÃvero, F. A., Gasparotto, F., Boeing, T., and de, S. P. (2021). Natural agents modulating ACE-2: A review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des. CPD-EPUB-113330 [pii]; 10.2174/1381612827666210114150607 [doi].
- Keles, E. S. (2020). Mild SARS-CoV-2 infections in children might be based on evolutionary biology and linked with host reactive oxidative stress and antioxidant capabilities. New Microbes. New Infect 36, 100723. S2052-2975(20)30075-5 [pii]; 100723 [pii]; 10.1016/j.nmni.2020.100723 [doi].
- Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., and Soetjipto, S. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints 202003.0226.v1. 10.20944/preprints202003.0226.v1.
Khan, A., Ikram, M., Hahm, J. R., and Kim, M. O. (2020). Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants. (Basel) 9. antiox9070609 [pii]; 10.3390/antiox9070609 [doi]. - Khomich, O. A., Kochetkov, S. N., Bartosch, B., and Ivanov, A. V. (2018). Redox Biology of Respiratory Viral Infections. Viruses 10. v10080392 [pii]; viruses-10-00392 [pii]; 10.3390/v10080392 [doi].
- Kumar, S., Paul, P., Yadav, P., Kaul, R., Maitra, S. S., Jha, S. K., and Chaari, A. (2022). A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Comput Biol Med 142, 105231. 10.1016/j.compbiomed.2022.105231.
- Kwatra, M., Ahmed, S., Gawali, B., Panda, S. R., and Naidu, V. G. M. (2020). Hesperidin alleviates chronic restraint stress and lipopolysaccharide-induced Hippocampus and Frontal cortex damage in mice: Role of TLR4/NF-κB, p38 MAPK/JNK, Nrf2/ARE signaling. Neurochem. Int, 104835. S0197-0186(20)30226-6 [pii]; 10.1016/j.neuint.2020.104835 [doi].
- Lima, A. C. D., Cecatti, C., Fidélix, M. P., Adorno, M. A. T., Sakamoto, I. K., Cesar, T. B., and Sivieri, K. (2019). Effect of Daily Consumption of Orange Juice on the Levels of Blood Glucose, Lipids, and Gut Microbiota Metabolites: Controlled Clinical Trials. J Med Food 22, 202-210. 10.1089/jmf.2018.0080 [doi].
- Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., Hsieh, C. C., and Chao, P. D. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 68, 36-42. S0166-3542(05)00125-7 [pii]; 10.1016/j.antiviral.2005.07.002 [doi].
- Mahmoudi, H. (2020). Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS. Hyg. Infect. Control 15, Doc35. dgkh000370 [pii]; Doc35 [pii]; 10.3205/dgkh000370 [doi].
- Malekmohammad, K., and Rafieian-Kopaei, M. (2021). Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Curr Pharm Des. 10.2174/1381612827666210705160130.
- Manach, C., and Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res 38, 771-785. 10.1080/10715760410001727858 [doi].
- Manach, C., Mazur, A., and Scalbert, A. (2005). Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol 16, 77-84. 00041433-200502000-00013 [pii]; 10.1097/00041433-200502000-00013 [doi].
- Manjunathan, R., Periyaswami, V., Mitra, K., Rosita, A. S., Pandya, M., Selvaraj, J., Ravi, L., Devarajan, N., and Doble, M. (2022). Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics 23, 180. 10.1186/s12859-022-04724-9.
- Marinella, M. A. (2020). Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin. Pract, e13535. IJCP13535 [pii]; 10.1111/ijcp.13535 [doi].
- Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., and Crescenti, A. (2020). Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients 12. nu12051488 [pii]; nutrients-12-01488 [pii]; 10.3390/nu12051488 [doi].
- Meneguzzo, F., Ciriminna, R., Zabini, F., and Pagliaro, M. (2020). Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes 8, 549. doi: 10.3390/pr8050549.
- Messina, G., Polito, R., Monda, V., Cipolloni, L., Di, N. N., Di, M. G., Murabito, P., Carotenuto, M., Messina, A., Pisanelli, D., et al. (2020). Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int J Mol. Sci 21. ijms21093104 [pii]; 10.3390/ijms21093104 [doi].
- Mouffouk, C., Mouffouk, S., Mouffouk, S., Hambaba, L., and Haba, H. (2021). Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL(pro) and PL(pro)), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J Pharmacol 891, 173759. S0014-2999(20)30851-7 [pii]; 173759 [pii]; 10.1016/j.ejphar.2020.173759 [doi].
- Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., and Ravindra, P. V. (2020). Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol 11, 570122. 10.3389/fimmu.2020.570122.
- Muchtaridi, M., Fauzi, M., Khairul Ikram, N. K., Mohd, G. A., and Wahab, H. A. (2020). Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules 25. molecules25173980 [pii]; molecules-25-03980 [pii]; 10.3390/molecules25173980 [doi].
- Murota, K., Nakamura, Y., and Uehara, M. (2018). Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem 82, 600-610. 10.1080/09168451.2018.1444467 [doi].
Nguyen, T. T., Woo, H. J., Kang, H. K., Nguyen, V. D., Kim, Y. M., Kim, D. W., Ahn, S. A., Xia, Y., and Kim, D. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett 34, 831-838. 845 [pii]; 10.1007/s10529-011-0845-8 [doi]. - Oh, Y. S., and Jun, H. S. (2017). Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol. Sci 19. ijms19010026 [pii]; ijms-19-00026 [pii]; 10.3390/ijms19010026 [doi].
- Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., Liu, Y., and Chen, Y. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl. Microbiol 120, 966-974. 10.1111/jam.13073 [doi].
- Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., and Ray, S. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol. Struct. Dyn, 1-11. 1796811 [pii]; 10.1080/07391102.2020.1796811 [doi].
- Park, H. K., Kang, S. W., and Park, M. S. (2019). Hesperidin Ameliorates Hepatic Ischemia-Reperfusion Injury in Sprague-Dawley Rats. Transplant. Proc 51, 2828-2832. S0041-1345(19)30141-1 [pii]; 10.1016/j.transproceed.2019.02.059 [doi].
- Park, J. Y., Yuk, H. J., Ryu, H. W., Lim, S. H., Kim, K. S., Park, K. H., Ryu, Y. B., and Lee, W. S. (2017). Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib. Med Chem 32, 504-515. 1265519 [pii]; 10.1080/14756366.2016.1265519 [doi].
- Petti, S., and Scully, C. (2009). Polyphenols, oral health and disease: A review. J Dent 37, 413-423.
- Romier, B., Schneider, Y. J., Larondelle, Y., and During, A. (2009). Dietary polyphenols can modulate the intestinal inflammatory response. Nutr. Rev 67, 363-378.
- Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., and Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 124, 64-74. S0024-3205(15)00048-X [pii]; 10.1016/j.lfs.2014.12.030 [doi].
- Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., and Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chem. Biol. Interact 328, 109211. S0009-2797(20)30794-8 [pii]; 109211 [pii]; 10.1016/j.cbi.2020.109211 [doi].
- Saeedi-Boroujeni, A., and Mahmoudian-Sani, M. R. (2021). Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm (Lond) 18, 3. 10.1186/s12950-021-00268-6.
- Sestili, P., and Fimognari, C. (2020). Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness? Front Pharmacol 11, 579944. 10.3389/fphar.2020.579944 [doi].
- Silvagno, F., Vernone, A., and Pescarmona, G. P. (2020). The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants. (Basel) 9. antiox9070624 [pii]; antioxidants-09-00624 [pii]; 10.3390/antiox9070624 [doi].
- Spagnuolo, C., Moccia, S., and Russo, G. L. (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 153, 105-115. 10.1016/j.ejmech.2017.09.001.
- Spiegel, M., Andruniów, T., and Sroka, Z. (2020). Flavones’ and Flavonols’ Antiradical Structure-Activity Relationship-A Quantum Chemical Study. Antioxidants. (Basel) 9. antiox9060461 [pii]; antioxidants-09-00461 [pii]; 10.3390/antiox9060461 [doi].
- Stevens, Y., Rymenant, E. V., Grootaert, C., Camp, J. V., Possemiers, S., Masclee, A., and Jonkers, D. (2019). The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health. Nutrients 11. nu11071464 [pii]; nutrients-11-01464 [pii]; 10.3390/nu11071464 [doi].
- Suhail, S., Zajac, J., Fossum, C., Lowater, H., McCracken, C., Severson, N., Laatsch, B., Narkiewicz-Jodko, A., Johnson, B., Liebau, J., et al. (2020). Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J, 1-13. 10.1007/s10930-020-09935-8 [pii]; 9935 [pii]; 10.1007/s10930-020-09935-8 [doi].
- Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., and Simonyi, A. (2015). Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1. PLoS. ONE 10, e0141509. PONE-D-15-34436 [pii]; 10.1371/journal.pone.0141509 [doi].
- Tatar, G., Salmanli, M., Dogru, Y., and Tuzuner, T. (2021). Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies. J Biomol Struct Dyn, 1-10. 10.1080/07391102.2021.1900919.
- Trujillo, J. A., Croft, N. P., Dudek, N. L., Channappanavar, R., Theodossis, A., Webb, A. I., Dunstone, M. A., Illing, P. T., Butler, N. S., Fett, C., et al. (2014). The cellular redox environment alters antigen presentation. J Biol. Chem 289, 27979-27991. M114.573402 [pii]; 10.1074/jbc. M114.573402 [doi].
- Utomo, R. Y., Ikawati, M., and Meyianto, E. (2020). Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints 12 March. doi: 10.20944/preprints202003.0214.v1.
- Velusamy, P., Mohan, T., Ravi, D. B., Kishore Kumar, S. N., Srinivasan, A., Chakrapani, L. N., Singh, A., Varadharaj, S., and Kalaiselvi, P. (2020). Targeting the Nrf2/ARE Signalling Pathway to Mitigate Isoproterenol-Induced Cardiac Hypertrophy: Plausible Role of Hesperetin in Redox Homeostasis. Oxid. Med Cell Longev 2020, 9568278. 10.1155/2020/9568278 [doi].
- Vijayakumar, B. G., Ramesh, D., Joji, A., Jayachandra, P. J., and Kannan, T. (2020). In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J Pharmacol 886, 173448. S0014-2999(20)30540-9 [pii]; 173448 [pii]; 10.1016/j.ejphar.2020.173448 [doi].
- Wallace, T. C., Bailey, R. L., Blumberg, J. B., Burton-Freeman, B., Chen, C. O., Crowe-White, K. M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R., et al. (2019). Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev. Food Sci Nutr, 1-38. 10.1080/10408398.2019.1632258 [doi].
- Wang, X., Yang, C., Sun, Y., Sui, X., Zhu, T., Wang, Q., Wang, S., Yang, J., Yang, W., Liu, F., et al. (2021). A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ Int 147, 106361. 10.1016/j.envint.2020.106361.
- Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., et al. (2020a). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 10, 766-788. S2211-3835(20)30299-9 [pii]; 10.1016/j.apsb.2020.02.008 [doi].
- Wu, J., Huang, G., Li, Y., and Li, X. (2020b). Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 15, 89. 371 [pii]; 10.1186/s13020-020-00371-5 [doi].
- Yeoh, Y. K., Zuo, T., Lui, G. C., Zhang, F., Liu, Q., Li, A. Y., Chung, A. C., Cheung, C. P., Tso, E. Y., Fung, K. S., et al. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. gutjnl-2020-323020 [pii]; 10.1136/gutjnl-2020-323020 [doi].
- Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., et al. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78, 11334-11339. 78/20/11334 [pii]; 0206-04 [pii]; 10.1128/JVI.78.20.11334-11339.2004 [doi].
- Zakaryan, H., Arabyan, E., Oo, A., and Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. Arch. Virol 162, 2539-2551. 10.1007/s00705-017-3417-y [pii]; 3417 [pii]; 10.1007/s00705-017-3417-y [doi].
- Zanini, S., Marzotto, M., Giovinazzo, F., Bassi, C., and Bellavite, P. (2015). Effects of dietary components on cancer of the digestive system. Crit Rev. Food Sci Nutr 55, 1870-1885. 10.1080/10408398.2012.732126 [doi].
- Zanini, S., Renzi, S., Limongi, A. R., Bellavite, P., Giovinazzo, F., and Bermano, G. (2021). A review of lifestyle and environment risk factors for pancreatic cancer. Eur. J Cancer 145, 53-70. S0959-8049(20)31377-0 [pii]; 10.1016/j.ejca.2020.11.040 [doi].
- Zannella, C., Giugliano, R., Chianese, A., Buonocore, C., Vitale, G. A., Sanna, G., Sarno, F., Manzin, A., Nebbioso, A., Termolino, P., et al. (2021). Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses 13. 10.3390/v13071263.
Zhang, Q., Yang, W., Liu, J., Liu, H., Lv, Z., Zhang, C., Chen, D., and Jiao, Z. (2020). Identification of Six Flavonoids as Novel Cellular Antioxidants and Their Structure-Activity Relationship. Oxid. Med Cell Longev 2020, 4150897. 10.1155/2020/4150897 [doi]. - Zhang, W., Jia, L., Zhao, B., Xiong, Y., Wang, Y. N., Liang, J., and Xu, X. (2021). Quercetin reverses TNFalpha induced osteogenic damage to human periodontal ligament stem cells by suppressing the NFkappaB/NLRP3 inflammasome pathway. Int J Mol Med 47. 10.3892/ijmm.2021.4872.
- Zuo, T., Liu, Q., Zhang, F., Lui, G. C., Tso, E. Y., Yeoh, Y. K., Chen, Z., Boon, S. S., Chan, F. K., Chan, P. K., and Ng, S. C. (2021). Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 70, 276-284. gutjnl-2020-322294 [pii]; 10.1136/gutjnl-2020-322294 [doi].